![预处理共轭梯度法识别桥梁动荷载分析与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/618/37204618/b_37204618.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.2 第二识别法(IMII)
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_10.jpg?sign=1738849889-JoNsH53IymGpgp001cSoCeWsxCjKOfk7-0-dc0afd0c8d226d26d653c9616eb3098c)
图2.2.1 移动荷载识别简支梁模型
如图2.2.1所示,将桥梁考虑为一简支梁,其跨长为L,抗弯刚度为EI,单位长度质量为ρ,黏性比例阻尼为C,忽略剪切变形和转动惯量(即伯努利-欧拉梁)。假设一动荷载f(t)以速度c自梁左端支承处向右移动,则其振动微分方程:
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_11.jpg?sign=1738849889-TwDymHgGKQpfiyIeIxjM99kTTn836e3r-0-2dd57535459cc0b24c8924c98e95ddf0)
这里v(x,t)是梁在时刻t、位置x处的变形,δ(x-ct)是狄拉克函数。
式(2.2.1)的边界条件为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_12.jpg?sign=1738849889-SfNi9RGMdjaKKoGW2aDtlhoNb217pIFm-0-3b67611c0ea96d1c3e4515c1b33eae03)
和
基于模态叠加原理,假设梁的第n阶模态振型函数为则式(2.2.1)的解可表示为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_15.jpg?sign=1738849889-SRcTQhcQKkcpU7yiOFlzM2skwvu9zobP-0-a65efb9f958fdc39dd42033a458198f7)
矩阵形式为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_16.jpg?sign=1738849889-ssAQnOYOsybEr1sYFkO80gd4S10y1s3y-0-14a541fc372ac46d543780fd58572df1)
这里n为模态数,qn(t)(n=1,2,…,∞)是第n阶模态位移。将式(2.2.2)代入式(2.2.1),并在[0,L]内对x进行积分,利用边界条件和狄拉克函数特性,系统振动微分方程可用模态位移qn(t)表示为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_17.jpg?sign=1738849889-azOqUdH0mwk83u7iRpiAohOdpMV0Kwva-0-5d62ae41ded514323b736fd8678f0db0)
这里分别为桥梁第n阶模态频率、阻尼比和模态力。
如有k个荷载,且第k个荷载到第一个荷载的距离为则式(2.2.4)可写为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_20.jpg?sign=1738849889-r6k9XFdHv1mJfhQmOe5y55ijmBsQ3NL8-0-3f2bf20e39967a1e1843caa9159ec099)
x1,x2,…,xl处的模态位移可通过式(2.2.1)求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_21.jpg?sign=1738849889-dL5JiIY8yxzmGrTUAieEYO7iEfxLKL8T-0-b617a607239e337b16556c686c0519dc)
梁上x1,x2,…,xl处的速度可通过位移的一次微分求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_22.jpg?sign=1738849889-82WBxVe2kEGTTt4pybRdNq4mc9caf8OI-0-21fac93d1a060ec772a6df818bcb0a35)
进一步,梁上x1,x2,…,xl处的加速度可通过位移的二次微分求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_23.jpg?sign=1738849889-hNRC85Jwgl8h1nVxUhkThdIoBKvDhBXR-0-281ae738d84919b4ff1ced5584b7d4e5)
类似地,相应位置的弯矩可利用关系式M=-EI(∂2v/∂x2)求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_24.jpg?sign=1738849889-fKi57E0AipZW6HqnDWe91oKmUkuITNHP-0-d773699e4cc297b3b34d947bfa138746)
若f1,f2,…,fk为已知常量移动荷载,忽略阻尼的影响,则式(2.2.1)的解为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_25.jpg?sign=1738849889-WsN1nVyxXhcQkTW6xhny7g0Xfix6DWxl-0-777e3a9ef12704a3ac12051402eedfc6)
这里若在一组常量移动荷载作用下,x1,x2,…,xl处的位移已知,则每个常量移动荷载可通过解下式方程求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_27.jpg?sign=1738849889-s7rG02RaRPRQqjRfkNxlDzX4tiiHJRw8-0-f1e93c2a9d8e8a9b4f99240f3cb7d6e3)
其矩阵形式可表示为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_28.jpg?sign=1738849889-oXnoLLjTL5T6LqsCXP7Y6VP5y6Ce54xf-0-d350857ead27914a0614acdc47cb245e)
这里
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_29.jpg?sign=1738849889-HIOcNjPzJkrDyqQgO301CVk7y4GdI6wx-0-5b21ce2c7f458ac0e077d5b54b5dc8e7)
若l≥k,即位移的测量点数大于或等于车轴轴数,f可用最小二乘法求解:
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_30.jpg?sign=1738849889-EgS5FrB2FbHu1KIEBFBMh13hVRLx3gxg-0-6c61beaf12189d72f048b50ad9dcd6cc)
若已知的不是桥梁位移响应,而是弯矩响应,则同样可以从弯矩响应求得式(2.2.1)的解:
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_31.jpg?sign=1738849889-q2JvAc4Vm48xuMvpueayAkBhQbblk8VQ-0-52dadc0451a27b72016189cfafa565f1)