![基于加权多维标度的无线信号定位理论与方法](https://wfqqreader-1252317822.image.myqcloud.com/cover/741/36511741/b_36511741.jpg)
5.3 基于加权多维标度的定位方法2
5.3.1 标量积矩阵的构造
方法2中标量积矩阵的构造方式与方法1中有所不同。首先令
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_322.jpg?sign=1738986190-LVHNlhTJe1mMKkloLBpF4gmmza4tmRkZ-0-643d0d220f4811817cfd1044655a3fdb)
(5.96)
利用传感器和辐射源的位置向量定义如下复坐标矩阵[9]:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_323.jpg?sign=1738986190-0ItAEXEkzw88r3NNVKCuqOnaQSvN8AIa-0-a119d7ca45e940e8e16b579d12b7e32c)
(5.97)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_324.jpg?sign=1738986190-ZqSVXsS26licZMxAxWAcKzyslex6Ctv2-0-c85e2d5ebb3b53e433014f906417a6fb)
(5.98)
假设为列满秩矩阵,即有
。然后构造如下标量积矩阵:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_327.jpg?sign=1738986190-4f8CyhDHSykF4Su7pX1D7fB9IhaPTHno-0-737f749ba16c681fa90d0c3566a73e61)
(5.99)
根据命题2.12可知,矩阵可以表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_329.jpg?sign=1738986190-GglWDjlFHmJ9u43exvvN71R9R5Z8xWo0-0-59970742cbd263e6b603fed5b8edc7da)
(5.100)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_330.jpg?sign=1738986190-iLYVqLv8XHmFrw2z111rGTAeJu0wyC75-0-9bdb9ae832887813f6347215a1576218)
(5.101)
式(5.100)和式(5.101)提供了构造矩阵的计算公式,相比于方法1中的标量积矩阵
,方法2中的标量积矩阵
的阶数增加了1维。现对矩阵
进行特征值分解,可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_335.jpg?sign=1738986190-2w61jjTEH5dHkFspGtgU0i4q7yZmNiyD-0-d35efe5019dd95dc9ff563a31dec338b)
(5.102)
式中,,为特征向量构成的矩阵;
,为特征值构成的对角矩阵,并且假设
由于
,则有
。若令
、
及
,则可以将矩阵
表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_350.jpg?sign=1738986190-8VxYeV5ajB9lBqUnpfHp03ooO45X4AEo-0-b08b9ef9204bcc9a33f41b8f4109e18a)
(5.103)
再利用特征向量之间的正交性可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_351.jpg?sign=1738986190-YHGUUQlEzlt3wqr5vVP2WusH493O81Et-0-1e846fb7daf9e0b39ba24228711396f7)
(5.104)
【注记5.6】本章将矩阵的列空间称为信号子空间(
也称为信号子空间矩阵),将矩阵
的列空间称为噪声子空间(
也称为噪声子空间矩阵)。
5.3.2 一个重要的关系式
下面将推导一个重要的关系式,它对于确定辐射源位置至关重要。首先将式(5.99)代入式(5.104)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_356.jpg?sign=1738986190-VmJCUFZsyCtAgPSadqKjIYZ8Rg4QESdU-0-528dc0ffd92563318819a0216e2cd776)
(5.105)
由式(5.105)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_357.jpg?sign=1738986190-0h8804JaAEvdbo4YKc2TE18HJIbo2Xw5-0-d548468072390b19947ffa9ebbf6ca8d)
(5.106)
接着将式(5.97)代入式(5.106)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_358.jpg?sign=1738986190-SqzTdJk6hjWvCV1iNUGuTuLxtwt87R71-0-180d3dc3788909a53bcd40976c065666)
(5.107)
然后将式(5.5)和式(5.98)代入式(5.107)中,并且同时消除等式两边的虚数单位可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_360.jpg?sign=1738986190-Puc2uQUbQ2eqRRovwpuB1iXZTb640aYH-0-b186bedf3b0badea75ec97f2f9a06489)
(5.108)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_361.jpg?sign=1738986190-UXHhh66fBESumbjK2CiRkWeSbeNRH7eG-0-dd9ee066f877889bc2f1f8088326a165)
(5.109)
显然,向量中包含了辐射源位置坐标,一旦得到了向量
的估计值,就可以对辐射源进行定位。式(5.108)是关于向量
的子空间等式,但其中仅包含噪声子空间矩阵
。根据式(5.103)可知,标量积矩阵
是由信号子空间矩阵
表示的,因此下面还需要获得向量
与矩阵
之间的关系式,具体可见如下命题。
【命题5.3】假设是行满秩矩阵,则有
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_371.jpg?sign=1738986190-qmHZFcjpovCwUQoZ2VI9Fum78d1WJL2A-0-68405e58333e7c3d5129a9584f80f835)
(5.110)
命题5.3的证明与命题5.1的证明类似,限于篇幅这里不再赘述。式(5.110)给出的关系式至关重要,但并不是最终的关系式。将式(5.110)两边左乘以可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_373.jpg?sign=1738986190-kzPl7f65LV0Et2XmGqbL51oUdrSVDH1N-0-a6d01aca4532751b47ec8e6b0192ce34)
(5.111)
式中,第2个等号处的运算利用了式(5.103)。式(5.111)即为最终确定的关系式,它建立了关于向量的伪线性等式,其中一共包含
个等式,而TDOA观测量仅为
个,这意味着该关系式是存在冗余的。
5.3.3 定位原理与方法
下面将基于式(5.111)构建确定向量的估计准则,并给出其求解方法,然后由此获得辐射源位置向量
的估计值。为了简化数学表述,首先定义如下矩阵和向量:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_379.jpg?sign=1738986190-eSdog1ExBgqRBJpcbJki6GDilkbZ4SWY-0-cbc453aa46fed55c3c39d97e96104937)
(5.112)
结合式(5.111)和式(5.112)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_380.jpg?sign=1738986190-Xy6EXkYsRxyVsSnJKzqs0P3GXem8NyNt-0-14e0d71313ab8400c24ab4faf828ca40)
(5.113)
1.一阶误差扰动分析
在实际定位过程中,标量积矩阵和矩阵
的真实值都是未知的,因为其中的真实距离差
仅能用其观测值
来代替,这必然会引入观测误差。不妨将含有观测误差的标量积矩阵
记为
,于是根据式(5.100)和式(5.101)可知,矩阵
可以表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_388.jpg?sign=1738986190-Ccrfdzc4VKroMIA9k6aTFcoYLixmytji-0-cd8e581efd047dd0b26b04df073178e7)
(5.114)
不妨将含有观测误差的矩阵记为
,则根据式(5.109)和式(5.112)中的第1式可知
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_391.jpg?sign=1738986190-7NLuFV0qorIQroywVeXC8GbsNwunYlwt-0-3324ca4c4a4fa95a5ea3e27744ead1b5)
(5.115)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_392.jpg?sign=1738986190-bROlibBBNZzatvGZDmxSoU6UNWGdGpOc-0-0576e52844a87757deb87ddf62b28e7a)
(5.116)
由于,于是可以定义误差向量
,忽略误差二阶项可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_395.jpg?sign=1738986190-AOpUj6nNKLfvU9b0ulnUau4kzOAK5V2s-0-ff528b2c43fe132681228e41e3b5676b)
(5.117)
式中,和
分别表示
和
中的误差矩阵,即有
和
。下面需要推导它们的一阶表达式(即忽略观测误差
的二阶及其以上各阶项),并由此获得误差向量
关于观测误差
的线性函数。
首先根据式(5.114)可以将误差矩阵近似表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_407.jpg?sign=1738986190-k14PmM6wBtrIyn4lOyUXv6zdOjbhuDYc-0-1931ba7233aa25ba29415b7f4db506c2)
(5.118)
利用式(5.118)可以将近似表示为关于观测误差
的线性函数,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_410.jpg?sign=1738986190-PZkTRyczGyvAc4fx8n7E7YmSNQdtGDBp-0-968c3e1d500f5766f233d14061846ec7)
(5.119)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_411.jpg?sign=1738986190-lh9oWrwZcjtVlmcXLG9LhcPNGrsG2QUC-0-a1becf89fb21c0a7d37abee981b12143)
(5.120)
其中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_412.jpg?sign=1738986190-cw7TddWXqGJ9tMM24bphTCtHOtkvNGkd-0-bb66c8f5ee1dad92f2660e18166f4119)
(5.121)
式(5.119)的推导见附录B.4。接着利用式(5.115)和矩阵扰动理论(见2.3节)可以将误差矩阵近似表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_414.jpg?sign=1738986190-Q6qNKAxtqRHahKDjn4Mxs9oIQwqH4yY5-0-6e8b81ab8d80a781c9b36b3110419c2a)
(5.122)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_415.jpg?sign=1738986190-mUBVqppUPTqnQurOjEQL6AmmDPWIQ3R8-0-bb56624eee22cb5f1d0dc15960b606ab)
(5.123)
结合式(5.122)和式(5.123),可以将近似表示为关于观测误差
的线性函数,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_418.jpg?sign=1738986190-RUuaFIDGySVlB0Mk0mCczY2izhb0GMQh-0-804fe597fca8ea4dd1d9fdd0eaa51401)
(5.124)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_419.jpg?sign=1738986190-3L8iJbXy15kyqJJeh4GEEsQtr72bjHbk-0-0a69a4b812168e59c3a54e0c08092180)
(5.125)
其中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_420.jpg?sign=1738986190-XuFfBpiWz0klnZSyiLBWjVmeMl2isCpf-0-d7a867c71c62b4299c25e3cfec9d694a)
(5.126)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_421.jpg?sign=1738986190-LgLANWMFbKqe2iW47m5ooucpd3WpXvy7-0-79dba92d6498169ca11b4d6a03cd16c5)
(5.127)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_422.jpg?sign=1738986190-QXOr04qvfTKo0660Fr33pYbVfXIVOz5S-0-968ab7f220dc49e269685aaf023b23f8)
(5.128)
式中,。式(5.124)的推导见附录B.5。
将式(5.119)和式(5.124)代入式(5.117)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_424.jpg?sign=1738986190-vRjQoKAXFCKAmKv0TTneEHVvRcnn8v5P-0-926d9dea41a9c1bb2f67fbcab1b0f325)
(5.129)
式中,。由式(5.129)可知,误差向量
渐近服从零均值的高斯分布,并且其协方差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_427.jpg?sign=1738986190-pHMFp1z7EHCejPEdztJMWVGwuXjakkqn-0-6c8b91095fb22f82ec7509a5d91ee04e)
(5.130)
2.定位优化模型及其求解方法
一般而言,矩阵是列满秩的,即有
。由此可知,协方差矩阵
的秩也为
,但由于
是
阶方阵,这意味着它是秩亏损矩阵,所以无法直接利用该矩阵的逆构建估计准则。下面利用矩阵奇异值分解重新构造误差向量,以使其协方差矩阵具备满秩性。
首先对矩阵进行奇异值分解,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_435.jpg?sign=1738986190-SMQscS16ZQPEZA0CXAS8TgrPgqN2x2jP-0-6273d92b796ed46b544d5c489e442b48)
(5.131)
式中,,为
阶正交矩阵;
为
阶正交矩阵;
为
阶对角矩阵,其中的对角元素为矩阵
的奇异值。为了得到协方差矩阵为满秩的误差向量,可以将矩阵
左乘以误差向量
,并结合式(5.117)和式(5.129)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_445.jpg?sign=1738986190-QZOV8K3e235pAOn4IF3U0hsK108mEkgn-0-4d12c9c12d6fa60bf6423aa8df4b0029)
(5.132)
由式(5.131)可得,将该式代入式(5.132)中可知,误差向量
的协方差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_448.jpg?sign=1738986190-Lt455u55TR0vsRdPGQbciaupYq7MOFVq-0-b3352d5372b9ef65aff096587dd78eb4)
(5.133)
容易验证为满秩矩阵,并且误差向量
的维数为
,其与TDOA观测量个数相等,此时可以将估计向量
的优化准则表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_453.jpg?sign=1738986190-Dgj2oWdOiExLEYEByezQEzNLwF7NlvJw-0-6d9a958ec130e7f57b38e33a2a83c6a6)
(5.134)
式中,可以看作加权矩阵,其作用在于抑制观测误差
的影响。不妨将矩阵
分块表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_457.jpg?sign=1738986190-vJrs6ceBgiSQ3XeIQfpqGn72yjD8SJz9-0-0c00281e8b965c8039c9515d32988e9d)
(5.135)
于是可以将式(5.134)重新写为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_458.jpg?sign=1738986190-zqO0HdtoL41jJYWSsVrYw1oQ0Ur9BkuF-0-d9b8bf4834517cc2be1597db756ba91b)
(5.136)
再结合二次等式约束式(5.49)可以建立估计向量的优化模型,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_460.jpg?sign=1738986190-PH5UCF9kr5Othx1UVqjhUPmf2QPpdv5z-0-3d58474809b35b809a7a1dfe03fdd0e6)
(5.137)
显然,式(5.137)的求解方法与式(5.51)的求解方法完全相同,因此5.2.3节中描述的求解方法可以直接应用于此,限于篇幅这里不再赘述。类似地,将向量的估计值记为
,根据式(5.17)中的第2式可知,利用向量
中的前面3个分量就可以获得辐射源位置向量
的估计值
(即有
)。
【注记5.7】由式(5.130)、式(5.131)及式(5.133)可知,加权矩阵与未知向量
有关。因此,严格来说,式(5.137)中的目标函数并不是关于向量
的二次函数,针对该问题,可以采用注记4.1中描述的方法进行处理。理论分析表明,在一阶误差分析理论框架下,加权矩阵
中的扰动误差并不会实质影响估计值
的统计性能[10]。
图5.10给出了本章第2种加权多维标度定位方法的流程图。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_474.jpg?sign=1738986190-ErL6NlEJ3RmR7Hmq0FsxAB7SR9QosKGY-0-61db923968a81652a8190b596914ed37)
图5.10 本章第2种加权多维标度定位方法的流程图
5.3.4 理论性能分析
下面将给出估计值的理论性能。需要指出的是,5.2.4节中的性能推导方法可以直接搬移至此,所以这里仅直接给出最终结论。
首先可以获得估计值的均方误差矩阵,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_477.jpg?sign=1738986190-PvnJX0nJsE2E3kdHwVkGYLdMNIhUARHt-0-44a8a1b204a6960eb85520963d277f0e)
(5.138)
与估计值类似,估计值
也具有渐近最优性,也就是其估计均方误差矩阵可以渐近逼近相应的克拉美罗界,具体可见如下命题。
【命题5.4】在一阶误差分析理论框架下,。
命题5.4的证明与命题5.2的证明类似,限于篇幅这里不再赘述。
5.3.5 仿真实验
假设利用6个传感器获得的TDOA信息(也即距离差信息)对辐射源进行定位,传感器三维位置坐标如表5.2所示,距离差观测误差向量服从均值为零、协方差矩阵为
的高斯分布。
表5.2 传感器三维位置坐标 (单位:m)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_483.jpg?sign=1738986190-L2bLn6qXPvS20xVgBYD18IPrUCsxR0ye-0-9f6a938eb5c13b0b95324fc643bacc79)
首先将辐射源位置向量设为 (m),将标准差设为
,图5.11给出了定位结果散布图与定位误差椭圆曲线;图5.12给出了定位结果散布图与误差概率圆环曲线。
然后将辐射源坐标设为两种情形:第1种是近场源,其位置向量为(m);第2种是远场源,其位置向量为
(m)。改变标准差
的数值,图5.13给出了辐射源位置估计均方根误差随着标准差
的变化曲线;图5.14给出了辐射源定位成功概率随着标准差
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_494.jpg?sign=1738986190-PZVPaBWLuUOe3ICmeIju9LHNYBBpNmPN-0-1cd0e7ea1d704a397b63bceffe1b0dd2)
图5.11 定位结果散布图与定位误差椭圆曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_495.jpg?sign=1738986190-wI3Dy7mATQPVtEYOIjZD5x4VA4ABUo7d-0-fda0da0b79a013ab0225354bfa71a1c2)
图5.12 定位结果散布图与误差概率圆环曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_496.jpg?sign=1738986190-dhMB0HbgNRaTLYWvD8y7DFbSk05TPA00-0-d3816eb75cb8e05664e8be087b103556)
图5.13 辐射源位置估计均方根误差随着标准差σt的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_497.jpg?sign=1738986190-iTQ00cgHavD9rNTFmKzuMA3WvcpPyqaF-0-765c50345206cbdae40b0206ee1dcf6f)
图5.14 辐射源定位成功概率随着标准差σt的变化曲线
接着将标准差设为两种情形:第1种是
;第2种是
,将辐射源位置向量设为
(m)。改变参数
的数值,图5.15给出了辐射源位置估计均方根误差随着参数
的变化曲线;图5.16给出了辐射源定位成功概率随着参数
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_506.jpg?sign=1738986190-3FkMVcYePxqvLrtfxXrL5UB4dKBAWJuC-0-5674c9781bc2862c1b7b9949ce5c4550)
图5.15 辐射源位置估计均方根误差随着参数k的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_507.jpg?sign=1738986190-QpFG3cdmf1zIf8LxZno4l08AqEnnWAeg-0-588eab35dee656327fad3b48d72eb6f6)
图5.16 辐射源定位成功概率随着参数k的变化曲线
从图5.13~图5.16中可以看出:(1)基于加权多维标度的定位方法2的辐射源位置估计均方根误差同样可以达到克拉美罗界(见图5.13和图5.15),这验证了5.3.4节理论性能分析的有效性;(2)随着辐射源与传感器距离的增加,其定位精度会逐渐降低(见图5.15和图5.16),其对近场源的定位精度要高于对远场源的定位精度(见图5.13和图5.14);(3)两类定位成功概率的理论值和仿真值相互吻合,并且在相同条件下第2类定位成功概率高于第1类定位成功概率(见图5.14和图5.16),这验证了3.2节理论性能分析的有效性。
下面回到优化模型式(5.137)中,若不利用向量所满足的二次等式约束式(5.49),则其最优解具有闭式表达式,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_509.jpg?sign=1738986190-P0OO1DF23stUK4VsHxrpnkPcVNPeLf9W-0-46b72110ed0160fa6f53c304692ae887)
(5.139)
仿照4.3.4节中的理论性能分析可知,该估计值是渐近无偏估计值,并且其均方误差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_510.jpg?sign=1738986190-iTMFsnJ6fE4nyBdJoBQ56anCIWtTzlnT-0-80810454bfab47d60af596999d5e0f86)
(5.140)
需要指出的是,若不利用向量所满足的二次等式约束,则可能会影响最终的定位精度。下面不妨比较“未利用二次等式约束(由式(5.139)给出的结果)”和“利用二次等式约束(由图5.10中的方法给出的结果)”这两种处理方式的定位精度。仿真参数基本同图5.15和图5.16,只是固定标准差
,改变参数
的数值,图5.17给出了辐射源位置估计均方根误差随着参数
的变化曲线;图5.18给出了辐射源定位成功概率随着参数
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_517.jpg?sign=1738986190-fzAsGo4vOLSmjAiKowzBIdbFQfyi8U6f-0-6de0fb67d60d10209dbfeaf0aa9f1ddc)
图5.17 辐射源位置估计均方根误差随着参数k的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_518.jpg?sign=1738986190-VrHoNjd9y9hD3i3cEW6xUw8Khum2fb1f-0-98fb7149df8c0c8b827ba6e1a63434bc)
图5.18 辐射源定位成功概率随着参数k的变化曲线
从图5.17和图5.18中可以看出,若未利用向量所满足的二次等式约束,则最终的定位误差确实会有所增加。
[1]若信号传播速度已知,则距离差与到达时间差是可以相互转化的。
[2]这里使用下角标“tdoa”来表征所采用的定位观测量。
[3]本节中的数学符号大多使用上角标“(1)”,这是为了突出其对应于第1种定位方法。
[4]也不会实质影响估计值的统计性能。
[5]由式(5.17)中的第2式可知,向量中的第4个分量一定是负数。
[6]这里使用下角标“tdoa”来表征此克拉美罗界是基于TDOA观测量推导出来的。
[8]参数k越大,辐射源与传感器之间的距离越远。
[9]本节中的数学符号大多使用上角标“(2)”,这是为了突出其是对应于第2种定位方法。
[10]加权矩阵中的扰动误差也不会实质影响估计值
的统计性能。