
5.2 材料力学基本公式
主应力及强度理论公式






许用应力与安全系数
对于标准的和专用的机械零部件,其许用应力与安全系数常常有比较成熟的推荐值。但对于非标准的或特殊的,或对其体积或尺寸无严格限制的机械零部件,其许用应力σp与安全系数S常需要设计者自己选取。
工作应力σc与许用应力σp的一般关系式为
σc≤σp
工作应力 σc=Kwσ
许用应力 σp=σlim/S
式中,Kw为载荷系数;σlim为材料强度的极限值。式中各σ的涵义应是广义的,也包括各相应τ的涵义。
对于塑性材料σlim=σs(强度计算)
σlim=σ-1(疲劳计算)
对于脆性材料σlim=σb
由于σ为与计算中所引用的名义载荷F对应的名义应力,σc是与在工作中所存在的实际工作载荷Fc对应的工作应力,因此,也就有
Kw=Fc/F
载荷系数Kw与工作载荷的类型或机器的受载状态有关。当有动态过载的危险时,要用经常反复的最大载荷(名义载荷加静态附加力和动态附加力)作为Fc。当有静态过载的危险时,要用按最不利的条件计算的最大的总力作为Fc,即使这个力只发生一次。
Kw的精确值只能通过对在已经做好的或与之类似的构件上的载荷或应力的测量得到。如果没有精确确定的Kw值,则可用表1-1-87的推荐值,也可参考表1-1-88的值。
表1-1-87 载荷系数Kw的推荐值

表1-1-88 载荷系数Kw的概略值

材料强度的极限值σlim要根据材料是塑性材料还是脆性材料,载荷是静载荷还是变载荷(脉动或交变),载荷是拉伸、扭转、弯曲载荷还是复合载荷,构件是否在高温下工作等而分别用屈服极限、扭转屈服极限、弯曲屈服极限、有应力集中时的弯曲屈服极限、强度极限、疲劳极限、蠕变极限等代入。
由于目前在手册中只给出材料的屈服极限与强度极限,只有少数材料有一些疲劳曲线,故在缺少资料的情况下,弯曲屈服极限与扭转屈服极限可由下式近似求得。
弯曲屈服极限σbs与屈服极限σs之间的关系为
σbs=kbσs(σs单位为MPa)
弯曲支承系数kb由下式求得:
对于圆杆 kb=1+053(300/σs)025
对于扁杆 kb=1+037(300/σs)025
扭转屈服极限也可用此式。
当有应力集中时,弯曲屈服极限σbs和扭转屈服极限τts与屈服极限σs之间的关系为
σbs或τts=kb,tσs/αk
式中的支承系数kb,t由下式求得:
kb,t=1+0.75(cαk-1)(300/σs)0.25
对于受弯曲的圆杆,c=1.7;对于受弯曲的扁杆,c=1.5;对于受扭转的圆杆,c=1.3。
形状系数αk由表1-1-89确定。
表1-1-89 按公式αk=A+B(X-C)求得的形状系数(式中)

注:r=(D-d)/2。
σbs与τts也可由表1-1-90查得。
表1-1-90 钢、灰铸铁与轻金属的平均疲劳极限

钢、灰铸铁与轻金属的平均疲劳极限与屈服极限σs或强度极限σb之间的关系可由表1-1-90求得。
安全系数S应当综合载荷确定的准确程度、材料性能数据的可靠性、所用计算方法的合理性、加工装配精度以及所设计的零部件的重要性等来确定。各行业都有一些凭经验的安全系数,但都偏于保守。
有一种相当流行的部分系数法,它将各个对安全系数有影响的因素分别用一个分系数S1、S2、…表示,这些分系数的乘积即为安全系数:
S=S1S2S3S4…
表1-1-91为各个分系数的例子及其推荐值。
表1-1-91 部分系数法求安全系数时各分系数的推荐值

实际上,这些分系数相互之间有一定的联系,即某个分系数取小值时,另一分系数可能要取大值。同时,对这些分系数的选择或对各影响因素的评估常带有主观性,即一般取大值或中间值。因此,如果取值不当,各个分系数的乘积就可能会很大,从而导致零件尺寸过大。通常,所考虑的因素越多,安全系数值越大。
因此,目前比较简单的方法是只取三个部分系数,即
S=S1S2S3
式中,S1考虑材料的可靠性(力学性能的均匀性,内部缺陷等);对锻件或轧制件制造的零件,S1=1.05~1.10,对铸造零件,S1=1.15~1.2。S2考虑零件的重要程度(工作条件),一般S2=1.0~1.3。S3考虑计算的精确性,一般S3=1.2~1.3。
有时也可按计算方法以下列粗略值选取安全系数:
按抗疲劳断裂计算S=1.5~3
按抗变形计算S=1.2~2
按抗断裂计算S=2~4
按抗不稳定计算S=3~5
截面力学特性的计算公式
表1-1-92

各种截面的力学特性








杆件计算的基本公式
表1-1-94



表1-1-96 非圆截面直杆自由扭转时的应力和变形计算式(线弹性范围)


注:截面周边各点切应力方向与周边相切,凸角点切应力为零,凹角点有应力集中现象。
表1-1-97 开口薄壁杆件截面几何参数


表1-1-98 开口薄壁杆件受约束扭转时的双力矩B和约束扭矩Mω


表1-1-99 弯曲切应力的计算公式及其分布(线弹性范围)



注:1.Fs—作用在横截面上垂直于中性轴的剪力。
2.垂直切应力τ沿中性轴等垂直距离处均布,周边切应力τ1与周边相切,且为全切应力。对薄壁截面序号3、5、6和7各点的全切应力即为τ1,且沿厚度均布。
表1-1-100 常用截面弯曲中心的位置

注:对于非对称开口薄壁截面梁,要求载荷通过截面的某特定点如图中S,且载荷所在平面平行于形心主惯性平面,此时梁不产生扭转变形,只产生平面弯曲,此特定点S称为截面的弯曲中心。
受静载荷梁的内力及变位计算公式



























单跨刚架计算公式
(引起刚架内侧拉伸的是正弯矩)


