![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第2章 一维势场中的粒子
2.1 复习笔记
一、一维势场中粒子能量本征态的一般性质
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image150.png?sign=1739109424-JVg9KJ1nYu620oDQI3YGji8dxEIPjXVG-0-13227fcd6f9095f51a15d6e428c9448b)
此即一维粒子的能量本征方程.以下定理1到4,不仅对一维问题成立,对于三维问题也同样适用.
1.定理l 设φ(x)是方程(1)的一个解,对应的能量本征值为E,则φ*(x)也是方程(3)的一个解,对应的能量也是E.
2.定理2 对应于能量的某个本征值E,总可以找到方程(1)的一组实解,凡是属于E的任何解,均可表示为这一组实解的线性叠加.
3.定理3 设V(x)具有空间反射不变性,V(-x)=v(x).如φ(x)是方程(1)的对应于能量本征值E的解,则φ(-x)也是方程(1)的对应于能量E的解.
(1)空间反射算符P
空间反射算符P定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image151.jpg?sign=1739109424-GxzrM3Dz0O6JdrVpFROXHMq8NAb0Iv10-0-c16695c066c8c96a58bbfedbdecfd182)
(2)偶宇称与奇宇称
如果对应于某能量E,方程(3)的解无简并,则解必有确定的宇称(parity)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image152.png?sign=1739109424-tRfGcXKHSxg075IK8X7unFaai3JTIuvC-0-ce0d1f6bfba87cc0fec68651b13134f7)
对于上式中C=+1的解
称为偶字称(even parity)解.
对于C=-1的解
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image154.jpg?sign=1739109424-UmFGsxTnuADOfy8k2aIQIl10SnmbXF0q-0-3d924462ed6cb60b4e596ca845aedc31)
称为奇宇称(odd parity)解.
4.定理4 设V(-x)=V(x),则对应于任何一个能量本征值E,总可以找到方程(3)的一组解(每一个解都有确定的宇称),而属于能量本征值E的任何解,都可用它们来展开.
5.定理5 对于阶梯形方位势
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image155.png?sign=1739109424-UypL27Yv0SLpESntCEEiAeCIsYDufxkA-0-536724b9df2fec811991f50815109359)
(V2—V1)有限,则能量本征函数φ(x)及其导数φ'(x)必定是连续的(但如
7.定理7 设粒子在规则(regular)势场V(x)(V(x)无奇点)中运动.如存在束缚态,则必定是不简并的.
二、方势
1.无限深方势阱,离散谱
(1)无限深方势阱本征能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image159.png?sign=1739109424-3gbabSlSIKpdcIIvcUqtGHnrMgxj941t-0-1bf5281e768c8765973af1fb09470f51)
该本征能量表达式说明说明:并非任何E值所相应的波函数都满足本问题所要求的边条件,一维无限深方势阱中粒子的能量是量子化的,即构成的能谱是离散的(disorete).
(2)无限深方势阱本证波函数
归一化波函数表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image160.jpg?sign=1739109424-ZEoWQZvV3PDquEtRIq4Te6eZOxYKXxn4-0-bfd259b6782e98812480cbb282f701b4)
2.有限深对称方势阱
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image161.jpg?sign=1739109424-5qSLRa0KEHLjU24RB4Uz2wTbjnk0yvzN-0-4a844e8a7f356538eb8c82dc1a7a7c01)
a为阱宽,V0为势阱高度.以下讨论束缚态(0<E<V0)情况.
束缚态能量本征函数(不简并)必具有确定宇称,因此只能取sinkx或coskx形式.
(1)偶宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image162.png?sign=1739109424-wDixAFIujIHRCSeZAflEIXhgebjxLziZ-0-662005311bfc1e031f4ea5faefcef921)
引进无量纲参数
有
(2)奇宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image165.jpg?sign=1739109424-DUIfFFgJjGb7fWkzv6qhjs1Kv5qPvAnr-0-971dcb364c65c92d6ba2416bc524c387)
同(1)可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image166.png?sign=1739109424-kl7eC3W3KgY1R9GqoIwnGUbWzv2zfyt9-0-a790fd11b7b9d0f0f94b6b47bc0ec94e)
只当
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image167.jpg?sign=1739109424-fCAvsO0gHF7ZojoAWxEsc1bXq0PMtSrs-0-1d2d80658101b7009d4518ecd1198fc7)
时,才可能出现最低的奇宇称能级.
3.束缚态与离散谱
只当粒子能量取某些离散值E1,E2,E3,…时,相应的渡函数φ1(x),φ2(x),φ3(x),…才满足束缚态边条件:|x|→∞处,φ(x)→0.这些能量值即能量本征值,相应波函数即能量本征函数.
4.方势垒的反射与透射
设具有一定能量E的粒子沿x轴正方向射向方势垒(图2-1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image168.png?sign=1739109424-sLqSNJqNNcJi62kEKm5abqph36DtQkzl-0-ee0a4e31b989819a5eeea4949b4eaf4a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image169.jpg?sign=1739109424-KAKwj397lkWc4DqBPafZn5byeJHeQjS6-0-3b9fd2bdb9c5e657ecd7ba911d1891b5)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image170.jpg?sign=1739109424-PfNxyJg0y9dLMT5RtVCUsjmUCE9KtobZ-0-7156d3e9f6624c6fb32f9467d3ba879d)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image171.jpg?sign=1739109424-2XGpPsejz4WflTgPSdKQWh1LpI4STQrI-0-bd7902649fbd7ece214ffae44a79516c)
图2-1 一维方势(V0>0)
(a)方势垒的反射与透射.E<V0
(b)方势垒的反射与透射,E>V0,
(c)方势阱的反射,透射与其振,E>0
(1)E<V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image172.jpg?sign=1739109424-1D4j0rgfHZgPR51uCyKSxL0bS0XhZhu9-0-db11fc57657fc787f53fcce042a1f347)
反射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image176.jpg?sign=1739109424-nLQItNHzf3IikpFhcQ1jLXJeLK6H6Wlh-0-4849859c44ea216c77001b19402ca106)
(2)E>V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image177.jpg?sign=1739109424-U9e5MDgjLO3hes7ldPOVKLidoMyKgDLx-0-6b3a85268741c3de61e698474ee1d9c6)
5.方势阱的反射、透射与共振
方势阱对应的透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image179.jpg?sign=1739109424-WRwCNXgRJcVRlRYZjjEQ1b8qdjqjvEpa-0-24ccf8f4b5cbe5e55603e88d6ef6e679)
(3)
由式(3)可以看出,如,则一般说来T值很小,除非入射粒子能量E合适,使sink'a=0,此时,T=1(反射系数|R|2=0),这现象称为共振透射.它出现的条件是:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image182.png?sign=1739109424-WHpLFOk9k5LOKPFvBrryFfmj6GJQzJGd-0-2bea70cce87189a2cc74ce582fe600e6)
共振时的能量
(4)
式(4)所确定的E,称为共振(resonance)能级.
三、δ势
1.δ势的穿透
设质量为m的粒子(能量E>0)从左入射,碰到δ势垒(图2-2)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image184.jpg?sign=1739109424-ujD3KuX0s96LHtzAIK531JybWbW5U793-0-88a814cf5be4d7f8ece4b2e219a89f2c)
图2-2
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image185.png?sign=1739109424-z8BxGt28jXDvLnwlHi78Um6I1XwtgfKl-0-215e57e06b1a2a183b994998f19c7aa2)
(3)式称为δ势中φ'的跃变条件.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image186.jpg?sign=1739109424-n7kYPnKgbgJjyyyjEhL9lIWe70qNyoPj-0-4764ff0d97ad35d78718dea9bc45c632)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image188.jpg?sign=1739109424-9wShIfHCEinDi5ZPrOCtt0GvTlmqpe6P-0-a1b0fa356e640688000e7bd49bea5793)
2.势阱中的束缚态
要求束缚能量本征态(不简并)具有确定字称.以下分别讨论.
(1)偶宇称态
归一化的束缚能量本征态波函数可表示为(取C为实数)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image189.jpg?sign=1739109424-I7MwoGINVf6KuRVsfq4hzim9fTeYz7z4-0-972d97f7d081b0f482eb0edf47933500)
(2)奇宇称态
波函数应表示为:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image190.jpg?sign=1739109424-BnwBOpBCE4YB35kiPnFuJQ1hPrrCYJpR-0-d8511ca44f252d6be05f4b1121c847b5)
3.δ势波函数微商的跃变条件
δ势波函数微商的跃变条件如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image191.jpg?sign=1739109424-LtNFPpYIUOuNsvJzNOCxx2kKg2FAE6BA-0-d2bdbd0123384531df950961e50f1714)
四、一维谐振子
1.一维谐振子本征能量
此即谐振子的能量本征值.可以看出,谐振子的能级是均匀分布的,相邻的两条能级的间距为.
2.一维谐振子本征波函数
一维谐振子波函数常用的关系式如下
其中。