
会员
Python数据分析从小白到专家
田越编著更新时间:2021-05-19 18:14:26
最新章节:13.3.3 写在最后的话:留给机器学习开会员,本书免费读 >
本书共13章,主要内容涵盖Python语法及数据分析方法。第1章主要介绍数据分析的概念,使读者有一个大致的印象,并简单介绍本书频繁使用的Python的5个第三方库。第2章主要做一些准备工作,手把手带读者搭建Python环境,包括Python3.7.6的安装和pip的安装。第3章介绍Python编程基础。第4章到第7章介绍使用Python进行简单数据分析的基础库,包括NumPy、Pandas和Matplotlib库,并介绍使用正则表达式处理数据的方法。第8章到第13章属于进阶内容,但也是Python数据分析的基础,结合机器学习介绍一些常见的用于数据分析的机器学习算法及常用的数学模型。
上架时间:2021-05-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
田越编著
主页
最新上架
- 会员
Redis应用实例
本书将从内部组件、外部应用和数据结构3个方面为读者介绍Redis常见、经典的用法与实例,并且所有实例均附有完整的Python代码,方便读者学习和参考。全书分3个部分:第一部分讲内部组件,介绍的实例通常用于系统内部,如缓存、锁、计数器、迭代器、速率限制器等,这些都是很多系统中不可或缺的部分;第二部分讲外部应用,介绍的实例都是一些日常常见的、用户可以直接接触到的应用,如直播弹幕、社交关系、排行榜、分页计算机7.4万字 - 会员
云计算与大数据应用
本书是云计算与大数据相关专业的标准化教材。全书以云计算与大数据的应用为核心。以云计算与大数据的基本知识为入手,以实际应用为脉络,用理论与实践相结合的方式介绍云计算与大数据的内容,全书共分七章,首先介绍了云计算与大数据的基本内容,让初学者有一定大致了解。而后介绍了云计算的应用,着重与在金融与制造行业的应用方面进行讲解。最后以大数据的应用收尾。全文应用研究均以实学科前沿科技出发,内容详细丰实,力求为云计算机15.1万字 - 会员
云数据中心基础
本教材共介绍7个项目,项目1为云数据中心认知,主要介绍了什么是数据中心、云数据中心的特点、体系结构、云数据中心和传统数据中心的区别、绿色数据的概念以及发展趋势。项目2介绍了云数据中心的规划与设计,主要包括云数据中心的设计建设的指标、基础设施的规划以及云数据中心的优化策略。项目3介绍了云数据中心的硬件选型,主要包括服务器设备、网络设备以及存储设备的介绍和选型。项目4到项目6则重点介绍了虚拟化技术、云计算机12.1万字 - 会员
算法设计与分析
为了便于读者进行系统学习、分类整理知识点及遇到问题时能够快速找到求解的方法,本书按照算法策略进行划分,每一章都引入了若干个经典问题。通过问题的分析、计算模型的建立、算法的设计与描述、算法的分析来深入解读每一种算法策略所能解决的问题范畴及方法。全书共分9章,内容包括:算法设计基础、算法效率分析基础、迭代法、蛮力法、分治策略、回溯与分支界限、贪心算法、动态规划、随机算法。本书非常注重教材的可读性和实用计算机9.4万字 - 会员
城市计算
本书概述了城市计算的定义、框架和主要研究问题,以典型应用为案例着重介绍大数据中异构数据的融合和协同计算技术,根据城市计算的框架分成四个部分:概念和框架、城市感知和数据采集、城市数据管理、城市数据分析。第一部分(第1章和第2章)给出城市计算的概述。第二部分(第3章)介绍了数据的来源和收集方法。第三部分由第4~6章组成,介绍了空间和时空数据的数据管理。第四部分由第7~10章组成,介绍了从城市大数据中挖计算机30.4万字 - 会员
数据挖掘算法实践与案例详解
数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。计算机4.7万字 - 会员
码上行动:利用Python与ChatGPT高效搞定Excel数据分析
本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。计算机8.5万字 - 会员
业务数据分析:五招破解业务难题
本书主要向读者介绍基于互联网技术的数据分析原理与方法,帮助读者理解并掌握数据分析能力,可使用到实践中并提升工作能力。本书具体内容包括学数据分析有什么用,数据分析的基础方法,数据分析的起点,数据分析的基础,数据分析的准备;通过数据分析看清现实,通过数据分析抓住业务增长机会,通过数据分析发现异常、处理异常、防止异常,通过数据分析预测与推荐,通过数据分析服务线下业务,数据分析结果汇报,以及让数据分析结果计算机10.3万字 - 会员
数据要素五论:信息、权属、价值、安全、交易
本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。计算机14.5万字